Predicting Extreme Events for Passive Scalar Turbulence in Two-layer Baroclinic Flows through Reduced-order Stochastic Models
نویسندگان
چکیده
The capability of using imperfect stochastic reduced-order models to capture crucial passive tracer statistics such as tracer energy spectrum, tracer intermittency, and eddy diffusivity is investigated. The passive scalar field is advected by a two-layer baroclinic turbulent flow which can generate various representative regimes in atmosphere and ocean. Much simpler and more tractable linear Gaussian stochastic models are proposed to approximate the complex and high-dimensional advection flow equations. The imperfect model prediction skill is improved through a judicious calibration of the model errors using leading order statistics of the background advection flow, while no additional prior information about the passive tracer field is required. A systematic framework of correcting model errors with empirical information theory is introduced, and optimal model parameters under this unbiased information measure can be achieved in a training phase before the prediction. It is demonstrated that crucial principal statistical quantities like the tracer spectrum and fat-tails in the tracer probability density functions in the most important large scales can be captured efficiently with accuracy using the reduced-order tracer model in various dynamical regimes of the flow field with distinct statistical structures. The skillful linear Gaussian stochastic modeling algorithm developed here should also be useful for other applications such as accurate forecast of mean responses and efficient algorithms for state estimation or data assimilation.
منابع مشابه
Stochastic Superparameterization and Multiscale Filtering of Turbulent Tracers
Data assimilation or filtering combines a numerical forecast model and observations to provide accurate statistical estimation of the state of interest. In this paper we are concerned with accurate data assimilation of a sparsely observed passive tracer advected in turbulent flows using a reduced-order forecast model. The turbulent flows which contain anisotropic and inhomogeneous structures su...
متن کاملNumerical Simulation of Separation Bubble on Elliptic Cylinders Using Three-equation k-? Turbulence Model
Occurrence of laminar separation bubbles on solid walls of an elliptic cylinder has been simulated using a recently developed transitional model for boundary layer flows. Computational method is based on the solution of the Reynolds averaged Navier-Stokes (RANS) equations and the eddy-viscosity concept. Transitional model tries to simulate streamwise fluctuations, induced by freestream turbulen...
متن کاملOn multi-scale dispersion under the influence of surface mixed layer instabilities and deep flows
A series of large eddy simulations is used to assess the transport properties of multi-scale ocean flows. In particular, we compare scale-dependent measures of Lagrangian relative dispersion and the evolution of passive tracer releases in models containing only submesoscale mixed layer instabilities and those containing mixed layer instabilities modified by deeper, baroclinic mesoscale disturba...
متن کاملA New Scalar Reynolds Stress Model For Non-Isothermal Wall Bounded Turbulent Flows
The present investigation concerns the development of advanced scalar turbulence modeling approaches and their application to the calculation of non-isothermal wall-bounded flow phenomena. A new scalar modeling technique based on scalar turbulent scales is proposed and implemented at a second-order modeling approach. Instead of the classical analogy concept between the mechanical and the scalar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017